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ABSTRACT: This study demonstrates an approach to expand and improve the current prediction capability of the
National Water Model (NWM). The primary objective is to examine the potential benefit of real-time local stage measure-
ments in streamflow prediction, particularly for local communities that do not benefit from the improved streamflow fore-
casts due to the current data assimilation (DA) scheme. The proposed approach incorporates real-time local stage
measurements into the NWM streamflow DA procedure by using synthetic rating curves (SRC) developed based on an es-
tablished open-channel flow model. For streamflow DA and its evaluation, we used 6-yr (2016–21) data collected from
140 U.S. Geological Survey (USGS) stations, where quality-assured rating curves are consistently maintained (verification
stations), and 310 stage-only stations operated by the Iowa Flood Center and the USGS in Iowa. The evaluation result
from NWM’s current DA configuration based on the USGS verification stations indicated that DA improves streamflow
prediction skills significantly downstream from the station locations. This improvement tends to increase as the drainage
scale becomes larger. The result from the new DA configuration including all stage-only sensors showed an expanded do-
main of improved predictions, compared to those from the open-loop simulation. This reveals that the real-time low-cost
stage sensors are beneficial for streamflow prediction, particularly at small basins, while their utility appears to be limited
at large drainage areas because of the inherent limitations of lidar-based channel geometry used for the SRC development.
The framework presented in this study can be readily applied to include numerous stage-only stream gauges nationwide in
the NWMmodeling and forecasting procedures.
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1. Introduction

The strategic goal of the National Weather Service (NWS)
to build a “Weather Ready Nation” requires not only devel-
opment of widespread community resilience, but also a better
scientific understanding of and preparation for the increasing
risks and vulnerability to extreme weather and water events
(Uccellini and Ten Hoeve 2019). Accurate hydrologic predic-
tion is a critical component of efforts to accomplish this goal
and manage potential threats and disasters from high impact
weather, water, and climate events. As part of these endeav-
ors, the National Water Center (NWC) implemented the
National Water Model (NWM) into operations in 2016 and
continues to provide the upgrades since then. The NWM is a
high-resolution distributed hydrologic modeling system built
on WRF-Hydro (Gochis et al. 2018) that simulates and fore-
casts streamflow over the continental United States (e.g.,
Maidment 2016; Cohen et al. 2018). The operational imple-
mentation of the NWM demonstrates an increasing demand
for high-resolution hydrologic modeling and forecasting sys-
tem. The NWM forecasting system enables researchers and
forecasters to obtain useful insights regarding detailed aspects
of the interactions among modeling elements (e.g., atmo-
sphere, surface, and subsurface) that have not been explored
by conventional approaches based on lumped and mesoscale

models (e.g., Sorooshian et al. 1993; Koren et al. 2014). This
effort on distributed modeling also complements hydrologic
guidance at current NWS forecast points and expands forecast
capabilities and coverage to ungauged locations (Cosgrove
et al. 2015, 2016; Quintero et al. 2020; Seo et al. 2021b).

NWM’s high-resolution distributed modeling and fore-
casting system requires model configuration based on high-
resolution topography and forcing datasets: 1) the model basis
is the landscape representation using National Hydrography
Dataset (NHD) Plus V2 (McKay et al. 2012) along with two
separate modeling grids, the land surface model (LSM) and
routing grids (e.g., 1.0 and 0.25 km, respectively); and 2) the
configuration for analysis and forecast modeling cycles con-
sists of radar- and NWP-based high-resolution forcing data.
This high-resolution distributed modeling does not necessarily
guarantee improved hydrologic prediction; prediction errors
are associated with numerous factors such as uncertainties in
forcing inputs, conceptual representation of physical pro-
cesses, model parameters, and their intricate interactions at
relevant space–time scales (e.g., Beven 1993; Carpenter and
Georgakakos 2004). As such, it is rather challenging to ac-
count for these uncertainty factors individually or calibrate
model parameters to accommodate all uncertainties together,
particularly at a national scale due to large variability across
various hydrologic regions/conditions.

As a simple way to mitigate the effect from these uncertain-
ties on the model predictions, the NWM applies a data assimi-
lation (DA) procedure, known as streamflow “nudging”
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(Gochis et al. 2018). This is a straightforward and inexpensive
(i.e., computationally) approach, which assimilates streamflow
observations into the model and replaces model states (at
gauging stations) to improve model forecasts as these updated
states are used as initial conditions for the NWM forecast
cycles. Our recent evaluation of the multiyear NWM simula-
tions demonstrates that the DA approach leads to improved
predictions compared to the open-loop simulation (Seo et al.
2021a). However, these improvements are limited only to cer-
tain scale of basins, for which streamflow measurements and
rating curves are regularly managed by the U.S. Geological
Survey (USGS). As evidenced in Seo et al. (2021a), relatively
small drainage areas (e.g., ,1000 km2) benefit less from DA
due to the scarcity of observed streamflow data at these
scales. Accordingly, it would be valuable to expand DA’s
proven effectiveness to these small scales and fill a scale gap
by incorporating real-time low-cost (e.g., stage-only) measure-
ments into the NWM’s DA procedure. This can lead to
NWM’s coverage expansion with enhanced prediction skills
because there are approximately thousands of stage-only sen-
sors nationwide (CRS 2019).

The use of stage measurements through DA in hydrologic
prediction has been limited due to the requirement of rating
curves. Few exceptions include direct forecasting of water lev-
els using stochastic models via an update of model parameters
(e.g., Romanowicz et al. 2006; Ziliani et al. 2019). In this
study, we develop a framework to include local stage observa-
tions in the NWM modeling procedure, which will expand
DA’s enhanced prediction capability at a wide range of basin
scales. Figure 1 illustrates the schematic overview of this
study and its individual elements required to build the re-
search framework. The framework uses synthetic rating curves
(SRC) derived using a well-established hydraulic model (i.e.,
HEC-RAS; Brunner 2010), channel geometry retrieved from
high-resolution airborne lidar-based topography data, and
local stage measurements (e.g., Quintero et al. 2021). The de-
velopment of SRC comprises several steps to account for un-
certainties in the estimation process (e.g., errors in lidar-based

topography data and channel roughness). We develop SRC
for stage-only stream gauges deployed in part of the Upper
Mississippi River and the Missouri River basins centered
on Iowa, in which abundant local measurement data from
about 280 Iowa Flood Center (IFC) and 30 USGS stage-
only stations are available as shown in Fig. 2a. The main
objectives of this study are 1) to incorporate local stage obser-
vations into the streamflow DA routine implemented in the
NWM’s channel routing element; and 2) to examine and dem-
onstrate potential benefit of these observations in streamflow
prediction.

2. NWM and hydrologic dataset

The NWM is a high-resolution distributed hydrologic modeling
and forecasting system built on the WRF-Hydro community
model (Gochis et al. 2018). In this section, we briefly describe
WRF-Hydro modeling elements and our model implemen-
tation for the study domain using the NWM configuration,
similar to the one running at the NWS. To implement NWM
in our computational environment, we used WRF-Hydro V5.0.3.
Because streamflow DA is a key factor of our NWM imple-
mentation, we provide detailed descriptions regarding NWM’s
DA scheme and its governing equations. The hydrologic data-
set used for the NWM simulation and analysis includes meteoro-
logical forcing products (e.g., precipitation) and streamflow
observations. We collected these forcing and streamflow data
from 2016 to 2021 and used them for the NWM retrospective
analysis. The model forcing data collected for an additional
period for August–December in 2015 were used to spin up
the model states.

a. NWM configuration

The central modules of the WRF-Hydro modeling system
consist of the LSM and water routing elements (i.e., surface,
subsurface, and channel routing). These elements are exe-
cuted on two different spatial resolutions (i.e., 1.0 km for
LSM and 0.25 km for grid-based routing) of the NWM

FIG. 1. Schematic overview of the NWM configuration to incorporate real-time stage measurements into its DA procedure.
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domain grids. We attained the NWM domain grid data for the
Iowa domain by using “domain subsetter” (Castronova et al.
2019) offline, with the help of the Consortium of Universities
for the Advancement of Hydrologic Science, Inc. (CUAHSI).
The model grids and parameters including a user-defined
mapping information for catchment aggregation were re-
trieved from the NWM version 2.0. In the NWM, the Noah
Multi-Parameterization (Noah-MP) LSM (Niu et al. 2011;
Yang et al. 2011) is selected to represent one-dimensional
(vertical) exchange of energy and water fluxes between atmo-
sphere and land surface. The groundwater/base flow module
of the NWM uses a conceptual bucket (a groundwater re-
servoir in each subbasin) model, describing an exponential
storage-discharge function (Gochis et al. 2018). The NWM’s
grid-based routing encompasses diffusive wave surface routing
(Downer et al. 2002) and saturated subsurface flow routing
(Wigmosta et al. 1994; Wigmosta and Lettenmaier 1999). Apart
from the grid-based ones, the NWM adopts Muskingum–Cunge
channel routing (e.g., Tang et al. 1999) based on vectorized
stream units (i.e., channel links) derived from NHDPlus V2
(McKay et al. 2012) stream reaches.

To reduce the effect of uncertainties in forcing inputs,
model physics, and model parameters and thus improve
model predictions, the NWM applies simple “nudging” DA
within its channel routing procedures (Gochis et al. 2018).
This DA scheme updates model initial states for NWM’s fore-
casting cycles (i.e., short-, medium-, and long-range; refer to
https://water.noaa.gov/about/nwm) by replacing model com-
putation with streamflow observations at corresponding as-
similation points. For a given space (i.e., stream reach) and
time domain, the Muskingum–Cunge routing equation is

Qd(t) 5 C1Qu(t 2 1) 1 C2Qu(t) 1 C3Qd(t 2 1) 1 qldt
D

( )
,

(1)

where Q denotes streamflow discharge at the current (t) and
previous (t 2 1) times at the upstream (u) and downstream

(d) locations of a stream reach. The terms C1, C2, and C3 are
coefficients calculated using routing parameters (see Tang
et al. 1999). The terms ql andD indicate lateral inflow and the
wedge storage contribution from lateral inflow. A nudge (N)
at an assimilation point is represented by the difference be-
tween observed and model estimated streamflow (i.e., model
error,Qt 2 Q̂t) with a limited temporal interpolation:

N 5
∑nt
t51

qtw
2(t) (Qt 2 Q̂t)

/∑nt
t51

w2(t), (2)

where qt denotes a quality coefficient of observed streamflow.
In our NWM implementation, we did not consider the uncer-
tainty of observed streamflow (i.e., qt 5 1) because streamflow
measurement (e.g., rating curve) uncertainties are unknown.
The term w(t) indicates a temporal smoothing function that
assigns a heavy weight to an observation within 15 min from
the current time and sets e-folding time as 2 h (see Gochis
et al. 2018 for details). In the current NWM configuration, no
spatial smoothing is active for computational efficiency. The
calculated nudge at time t 2 1 at the downstream reach,
Nd(t 2 1), is then applied to all upstream and downstream
reach terms in Eq. (1):

Qd(t) 5 C1[Qu(t 2 1) 1 Nd(t 2 1)] 1 C2[Qu(t) 1 Nd(t 2 1)]

1 C3[Qd(t 2 1) 1 Nd(t 2 1)] 1 ql dt
D

( )
: (3)

Equation (3) is the current form of nudging formula used in
the NWM, and the nudge added to all upstream and down-
stream terms reduces discontinuity between upstream and
downstream reaches. However, the nudge applied to the up-
stream reach does not contribute to the model output values
of the upstream reach and is used only when solving down-
stream discharge. Consequently, the nudging effect is pro-
pagated downstream only through this Muskingum–Cunge
channel routing. Note that we excluded reservoir routing in
our NWM configuration to simplify the model implementation.

FIG. 2. (a) USGS streamflow and IFC and USGS stage-only gauge locations in Iowa and (b) a box-and-whisker plot
describing the distributions of drainage areas covered by each gauge network.
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We ran the model using the hydrologic parameter set retrieved
from the NWM 2.0 with no further calibration. Parameter cali-
bration in LSM and surface/subsurface routing tends to be less
impactful on DA because observed streamflow at an assimila-
tion point and channel flow routing along the downstream
river reach are the primary factors determining streamflow
discharge.

b. Forcing products

We used two meteorological forcing products to drive the
NWM: 1) Multi-Radar Multi-Sensor (MRMS) precipitation
estimates (J. Zhang et al. 2016); and 2) North America Land
Data Assimilation System (NLDAS) dataset (e.g., Xia et al.
2012). MRMS provides a wide range of products (e.g., severe
weather, transportation, and precipitation) for hazardous
weather monitoring and forecasting. The MRMS system inte-
grates multiple radar data with surface and upper air observa-
tions, lightning detection, satellite observations, and numerical
weather prediction model analysis. MRMS includes a suite of
quantitative precipitation estimation (QPE) products with
0.018 spatial resolution and a variety of temporal (e.g., 2 min
and 1, 3, 6, 12, 24, 48, and 72 h) resolutions. In this study, we
used an hourly MRMS QPE product that contains a bias cor-
rection using rain gauge data. The real-time MRMS product is
available from the National Centers for Environmental Predic-
tion via a web protocol (https://mrms.ncep.noaa.gov/data/).

The Noah-MP LSM requires additional meteorological
forcing such as incoming shortwave and longwave radiation,
specific humidity, air temperature, surface pressure, and near-
surface wind components. We retrieved these forcing data from
the hourly NLDAS dataset at a resolution of 0.125 decimal
degrees. The NLDAS dataset is available from the National
Aeronautics and Space Administration’s Goddard Earth
Sciences Data and Information Services Center (https://
disc.gsfc.nasa.gov/datasets/). We collected both MRMS and
NLDAS data for the study period from 2015 to 2021 and re-
sampled them onto the 1-km LSM grid to drive the NWM
(i.e., Noah-MP).

c. Streamflow and stage observations

For streamflow DA in the NWM, we used streamflow ob-
servations from 140 U.S. Geological Survey (USGS) stations
and stage measurements from 280 Iowa Flood Center (IFC)
and 30 USGS stage-only sensors in Iowa (see Fig. 2). The use
of stage measurements aims to complement the current cover-
age of the USGS streamflow stations included in the NWM
DA routine and expand DA’s proven performance (e.g., Seo
et al. 2021a) to relatively small-scale basins and local commu-
nities. Hereafter, we use “USGS stations” to indicate loca-
tions where quality-assured rating curves and discharge data
are provided and distinguish them from “USGS stage-only
stations.”

We collected quality-controlled streamflow data with a
15-min interval from 140 USGS stations for the period from
2016 to 2021. These streamflow data enable streamflow DA at
all corresponding assimilation locations, as well as the evalua-
tion of DA effect propagated to their downstream stations.

The streamflow data were acquired by transforming recorded
river stage into discharge using well-defined rating curves esti-
mated for each individual station. The USGS has developed
the rating curves through periodic stage-discharge measure-
ments, especially during low- and high-flow events. As we dis-
cussed in section 2a, we do not account for the rating curve
uncertainty and its effect on the DA evaluation in this study.

During the last decade, IFC has provided streamflow pre-
dictions over the entire state of Iowa (Krajewski et al. 2017).
IFC has deployed bridge-mounted stream sensors to monitor
streams and creeks near Iowa communities for which IFC
makes streamflow predictions to complement NWS’s fore-
casts issued at the limited number of forecast points. The
number of sensors is consistently increasing upon requests
from local agencies and communities. These sensors measure
water elevation every 15 min using an ultrasonic sensor and
transfer the observations to a data server via cell phone com-
munication (Kruger et al. 2016). The sensors are autonomous:
i.e., equipped with a battery recharged by a solar panel, a da-
talogger, a GPS receiver, and a cell modem to relay the data.
IFC has developed a procedure to build SRC (Quintero et al.
2021) to incorporate these data into model-based streamflow
prediction. A brief description regarding the development of
SRC is provided in section 3. We collected IFC’s stream sen-
sor data (stage and discharge) for the study period. The avail-
able data period for individual stations varies according to
their deployment time. The real-time data of IFC stream sen-
sors can be visualized via the web-based Iowa Flood Informa-
tion System.

While most USGS stations provide discharge observations,
some remain river stage-only gauges because of limited funds
available to regularly develop and maintain rating curves. The
stations are equipped with modern electronic stage sensors
and water-level recorders to collect river stages. We collected
data from 30 USGS stage-only stations in Iowa for the year of
2021 and developed SRC (these data are available online for
the latest 120 days only). The UGGS streamflow and stage-
only data are available from the National Water Information
System (https://waterdata.usgs.gov). While we assimilated dis-
charge data obtained from SRC into the NWM simulations,
we did not use them for the DA evaluation due to uncertainty
contained in SRC, degree of which is site specific.

3. Methodology

In this section, we describe approaches to develop SRC and
evaluate the effect of streamflow DA. These approaches are
the essential factors needed to accomplish the main objectives
of this study discussed in section 1.

a. SRC

The USGS’s standard to develop and maintain the stage-
discharge rating curve entails frequent site visits to acquire di-
rect discharge and stage measurements for various river flow
conditions. These site visits need to partially account for occa-
sional changes in channel bed (e.g., sedimentation and ero-
sion). Although this standard procedure results in the most
accurate stage–discharge relationship, it is also prohibitively

WEATHER AND FORECAS T ING VOLUME 372024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 08:26 PM UTC

https://mrms.ncep.noaa.gov/data/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
https://waterdata.usgs.gov


expensive. IFC in partnership with the Iowa Silver Jackets
Program (2016) developed a methodology economically fea-
sible to extend the capabilities of stage-only sensors. This
method allows the translation of stage readings into dis-
charge estimates by using SRC derived from hydraulic mod-
els, particularly HEC-RAS (Quintero et al. 2021). The
implementation of this approach requires one visit to the
sites to collect brief information on the channel section
geometry, sensor location, and its adjacent sections upstream
and downstream.

We used the lidar-based topography data to delineate rele-
vant channel sections required for a hydraulic model. Because
lidar beam cannot penetrate the water column, our methodol-
ogy includes a procedure to correct the elevation of channel
bottom based on the stage measurements during dry seasons.
The visit to the sites of interest also allows us to measure and
achieve the bottom elevation for a better representation of
channel cross sections. Figure 3 shows a brief evaluation result
of SRC developed at four locations where USGS and IFC
sensors are collocated; reference streamflow data exist at
these USGS stations. In Fig. 3, the correction of channel bot-
tom leads to an improved rating curve estimation at Marshall-
town and Oxford (top panel), while the correction at the
other two sites (bottom panel) is not as efficient as the ones
shown in the top panel. The uncertainty of SRC is caused by
various factors, and we explore how this uncertainty results in
streamflow DA in this study. However, the investigation on
the uncertainty factors themselves in the rating curves is not
within the scope of this study. For detailed development

processes of SRC and their extensive evaluation, refer to
Quintero et al. (2021).

Following the same methodology, we also developed SRC
for the 30 USGS stage-only stations. To obtain the topo-
graphic information at these locations, we visited each site
and collected a cross section downstream of the bridge, the
slope of the channel, and other information useful to set up
the hydraulic model to complement the lidar data. However,
the data availability for these sites is limited to 1 year only
and their coverage area is very small as shown in Fig. 2b.

b. Evaluation

We simulated the NWM for the 7-yr period with stream-
flow DA and open-loop (No DA) modes. We used the first
year (i.e., 2015) simulation to spin up the model states for the
remaining analysis period of 6 years. In the DA mode, we as-
similated streamflow discharge in two ways: 1) NWM’s cur-
rent DA configuration using the streamflow data collected
only from the 140 USGS stations (referred to as “USGS-only”
and not including data from USGS stage-only sensors); and
2) new DA configuration using all combined network gauge
data (referred to as “Combined” and the number of stations
is about 450 in total). These separate simulations were de-
signed to evaluate potential benefit of stage sensors in stream-
flow prediction by comparing the results of Combined with
those of USGS-only at the evaluation stations that possess as-
similation points upstream. In the analyses, we limited the
evaluation period to relatively warm months during April–
October in each year. Streamflow during winter and early

FIG. 3. A preliminary evaluation of SRC derived from the lidar data (with and without the bottom corrections)
compared to the USGS rating curves at four selected sites in Iowa.
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spring in Iowa is primarily affected by frozen ground and snow-
melt combined with winter precipitation, the observations/
estimations for all of which are typically subject to large
uncertainties (e.g., Seo et al. 2015; J. L. Zhang et al. 2016;
Souverijns et al. 2017).

For a meaningful DA assessment at the evaluation points,
the model-computed streamflow propagated from upstream
assimilation points should be compared with the observed
streamflow at the location. However, this is infeasible with
the current setup of NWM’s DA routine: the execution of
DA replaces model-simulated streamflow with the observed
values at all gauging stations where valid observations are fed
into the model. This setup is challenging for DA assessment
because most evaluation points also become assimilation
points for their downstream reaches, implying that observed
streamflow at the evaluation points overwrites model values
propagated from upstream reaches. For that reason, we re-
trieved the model-simulated values at the closest upstream
links (one or multiple) directly connected with the corre-
sponding evaluation point to evaluate the effects of DA. The
underlying assumption here is that the effects of channel rout-
ing and later inflow along a stream segment (link) to which
the evaluation point belongs are negligible. This assumption
was validated in Seo et al. (2021a) through an experiment us-
ing two pilot basins in Iowa.

To quantitatively measure the hydrologic prediction skills of
DA, we use four performance evaluation metrics: 1) relative
volume error (REV); 2) relative peak error (REQp

); 3) peak
timing error (Etp

); and 4) Kling–Gupta efficiency (KGE; Gupta
et al. 2009). The formulas of these metrics are provided:

REV 5
VNWM 2 Vobs

Vobs
3 100%, (4)

REQp
5

Qp,NWM 2 Qp,obs

Qp,obs
3 100%, (5)

Etp
5 tp,NWM 2 tp,obs, (6)

KGE 5 1:0 2

������������������������������������������
(r 2 1)2 1 (a 2 1)2 1 (b 2 1)2

√
, (7)

where V, Qp, and tp denote total water volume (m3), peak dis-
charge (m3 s21), and peak time (h), respectively, obtained
from model simulations (NWM) and observations (obs) in an
annual basis (April–October). KGE is represented as a func-
tion of correlation (r), the ratio of standard deviation (a), and
the ratio of mean (b) between simulated and observed
streamflow. This metric is often used as an overall perfor-
mance indicator describing the predictive power of hydrologic
models to avoid some deficiencies (e.g., skewness and vari-
ability due to sampling) of Nash–Sutcliffe efficiency (NSE;
Nash and Sutcliffe 1970). While there are many discussions
regarding the advantages and disadvantages of KGE and
NSE (e.g., Lamontagne et al. 2020; Clark et al. 2021), we de-
cided to use KGE because KGE is easily understood by
examining its contributing components (i.e., r, a, and b).

4. Results

The main factor impacting the performance of DA is the
fractional coverage of upstream assimilation points to the en-
tire contributing area delineated by the downstream evalua-
tion point (e.g., Seo et al. 2021a). As illustrated in Fig. 4, the
fractional coverage within the study domain improved consid-
erably by including stage-only sensors in the DA framework.
The number of evaluation points that require at least an as-
similation point upstream increased from 72 to 100, implying
that 28 farther upstream areas benefit additionally from DA
using the stage-only sensors. Figure 4 shows the change of
fractional coverage distribution and cumulative percentage
between the two DA configurations discussed in section 3b.
We recognize from Fig. 4a that the number of evaluation
points decreases at a lower coverage range (e.g., 0.2–0.5) and
increases oppositely at a higher range (e.g., 0.5–1.0) after in-
cluding stage sensors. This is due to the effect of additional
coverage added by the stage sensors that monitor upstream
tributaries and local communities. The cumulative percentage

FIG. 4. (a) Distributions and (b) cumulative percentages of the fractional coverage for different DA configurations
(USGS only and Combined). The same colors are applied to (a) and (b) to compare the two configurations.
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in Fig. 4b represents an “exceedance” proportion (e.g., similar
to exceedance probability) for a given coverage value. For ex-
ample, about 60% of areas in the combined network coverage
have a fractional coverage value greater than 0.8, while there
are about 50% of those with USGS-only for the same cover-
age threshold.

a. DA with USGS-only

The results of DA simulation with USGS-only are evalu-
ated against those of open-loop simulation (No DA). We cal-
culated the four metrics defined in Eqs. (4)–(7) and present
them in Fig. 5. All these metrics were estimated in an annual
basis because the data availability of upstream assimilation
points was not consistent year to year, and thus the fractional
coverage may vary year to year for some locations. Each cir-
cle in Fig. 5 indicates an annual estimate of the metrics at an
evaluation point, and we placed all 6-yr (2016–21) results to-
gether in Fig. 5. To identify an annual peak from the simu-
lated NWM time series, we defined a scale-dependent time
span around the annual peak observed from the USGS
streamflow data. The errors in peak (REQp

) and its timing
(Etp

) are then estimated from an NWM simulated peak speci-
fied within the time span to avoid cases where a model simula-
tion generates an annual peak from an entirely different
event (see e.g., Seo et al. 2021a). We determined the time
span by estimating time of concentration (i.e., the travel time
along the longest stream network within a specific drainage
area) or 5 days, whichever is smaller.

It is obvious that DA improves in estimating runoff volume
and peak discharge, compared to the open-loop simulation.
The circles with DA in the relative volume error are densely
placed around the no error (0%) line, whereas the ones with
open-loop are widely distributed within a range from 250%
to 100%. The error in relative peak shows a similar tendency
to relative volume, but with a little higher variability and
more underestimations. We speculate that DA’s slight under-
estimations in total runoff volume and peak discharge might
be the effect of lateral inflow ignored along a stream segment
to which the evaluation points belong. The estimation of peak
timing seems to be quite challenging for both DA and open-
loop simulations: the circles are broadly scattered, and many
of them tend to align along the one-to-one line, meaning that

the results of DA and open-loop are very close. We note that
there is a smaller number of circles in the peak timing than
those in other metrics because we present the error only
within a 24-h time span. The overall performance of stream-
flow simulations represented by KGE demonstrates the supe-
riority of DA over open-loop: almost all circles are placed
above the one-to-one line that indicates equal-performance of
the two simulations.

In Fig. 6, we reorganize the results shown in Fig. 5 to dem-
onstrate the scale-dependent performance of NWM simula-
tions. As demonstrated in Fig. 6, DA tends to improve
prediction skills as drainage scale becomes larger. This scale
dependence of DA looks prominent, particularly with the rel-
ative volume error and KGE: 1) the variability of volume er-
ror gradually decreases and the mean of the error approaches
no bias with increasing scale; and 2) KGE increases sharply
and approaches the unity as drainage scale increases. We ob-
serve some exceptions at the largest scale with unexpected
dispersion in the peak error and KGE. This dispersion might
be the effect from the misrepresentation of catchment aggre-
gation and stream networks implemented in the NWM, dis-
cussed in Rojas et al. (2020).

b. DA with Combined

We combined data from all stream gauges together shown
in Fig. 2 and forced them into the NWM DA data stream to
evaluate the utility of stage sensors in the model prediction.
To distinguish the new DA effect of stage sensors from the
existing one by USGS-only, we specify three types of stream
gauge network configuration (referred to as “NC”) that may
affect DA performance, as illustrated in Fig. 7. NC1 demon-
strates unprecedented value of stage sensors in the DA frame-
work. While the DA effect of NC1 can be evaluated only at
28 locations as shown in Fig. 4, there are much more NC1
areas that cannot be evaluated in the study domain because it
requires a USGS station at their direct downstream reach. In
NC2, the stage sensors provide additional observation cover-
age to the evaluation point downstream. In the study domain,
the USGS stations (e.g., a USGS assimilation point in NC2)
typically monitor the main stream reach of large areas, and
thus their fractional coverage tends to be higher than that of
stage sensors that are mostly located in small creeks and

FIG. 5. Performance comparison of the DA simulation results with those of the open-loop simulation (No DA). Each circle corresponds
to an annual estimate at an individual evaluation location, and all 6-yr (2016–21) results are presented in the figure.
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streams. In NC3, the stage sensors are located between the
USGS assimilation (upstream) and evaluation (downstream)
points. DA at the stage sensors replaces the effect from the
USGS assimilation points with the stage sensor data; the
model overwrites the result propagated from the upstream
USGS streamflow observations. The number of NC2 and
NC3 gauges in the study domain are 12 and 34, respectively.

We calculated the four metrics for the three NC cases and
present them in Fig. 8. The circles in Fig. 8 are annual esti-
mates for the entire 6-yr period. Since the circles seem more
scattered than those in Fig. 5, we expose the different colored
zones in the volume and peak errors to readily distinguish the
superiority of each DA configuration. The zones shaded by
light green and orange colors indicate that USGS-only and
Combined performs better than the other, respectively.

In fact, the DA effect in NC1 is actually compared with the
result of open-loop simulation because all these evaluation
points were the farthest upstream stations in the USGS net-
work, and thus no DA result was available with USGS-only.
It is not clear from Fig. 8 whether DA (Combined) for NC1
performs better than open-loop does in estimating total water

volume and peak discharge. On the other hand, the majority
of evaluation points show significant improvement in KGE as
most circles are placed over the one-to-one line. We note that
the annual (April–October) KGE estimated in this study may
include a sampling issue (e.g., variability and skewness) docu-
mented in Lamontagne et al. (2020). One can reduce this sam-
pling issue by estimating a KGE value for the time series of
entire 6-yr data. However, each deployment time of IFC stage
sensors varies, and the data availability of upstream assimila-
tion points is not consistent year to year for the Combined
DA configuration. This fact made harder to estimate a consis-
tent and robust performance metric value using the entire
time series over the 6-yr period. Although we attempted to
calculate lognormal NSE (LNSE) with the same annual basis,
we decided to use KGE because its performance is under-
standable by interpreting its constituting components. The
use of LNSE may raise a similar issue regarding sampling
biases (Lamontagne et al. 2020).

The fractional coverage in NC2 slightly increased by the ad-
ditional areas monitored by the stage sensors. We do not ob-
serve meaningful changes from Fig. 8, except two cases marked

FIG. 7. Three example types of stream gauge network configuration when adding stage-only sensors on the current
USGS (streamflow) network. NC stands for network configuration.

FIG. 6. Performance comparison between the DA and open-loop (No DA) simulations with respect to drainage scale.
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by the red circles, probably because a small portion of coverage
combined cannot change major features of streamflow. We in-
vestigated the two exceptions indicated in NC2 that show a sig-
nificant performance drop in KGE. Figure 9 shows observed
and simulated hydrographs at the two exceptional locations
(the Middle Raccoon River at Panora and the Turkey River at
Garber) for the period in 2020. In both locations, DA (Com-
bined) shows systematic shifting that causes a considerable
change in bias factor b in Eq. (7) while the other two terms in
Eq. (7) remain at a similar range. This leads to a significant
drop in KGE. The observed systematic overestimations seem
to be an issue with SRC developed for these specific sites using
lidar information in the absence of a detailed survey that de-
scribes fairly the local characteristics of the channel. Findings
from Quintero et al. (2021) suggest that a better topographic
description of the channel alleviates this problem.

The evaluation points included in NC3 cover relatively
large areas. As we expected, the DA (Combined) perfor-
mance measured by KGE becomes worse in most locations.
In these NC3 locations, streamflow data estimated using SRC
replace the assimilation effect propagated from the USGS sta-
tions upstream. Therefore, the quality of SRC directly affects

DA performance in the NC3 locations, and the derivation of
lidar-based rating curves is challenging for these large drain-
age areas.

We reorganize the results of NC1 in Fig. 8 and present
them with respect to drainage scale in Fig. 10. NC2 and NC3
were excluded in this scale-dependent analysis because the
benefit of DA using the stage sensors in NC2 and NC3 is not
meaningful. As demonstrated in Fig. 10, NC1 includes many
small-scale areas that were not covered by the USGS stream
gauges (see Fig. 6 for a comparison of scales covered). In
Fig. 10, we do not detect any visible scale dependence on the
prediction performance from each DA and open-loop simula-
tion. Instead, the results of DA (combined) show better per-
formance with the errors in peak and KGE particularly at
scales smaller than 1000-km2 areas.

5. Conclusions

This study builds on the preliminary performance evalua-
tion of NWM DA documented in Seo et al. (2021a). In this
study, we demonstrate a framework to expand DA’s proven
performance to relatively small-scale areas and improve

FIG. 8. Performance comparison of DA (Combined) with DA (USGS-only) for the different stream gauge network configuration (NC).
The two different colored zones represent the superiority of each DA configuration (light green: USGS-only; and light orange:
Combined).
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streamflow predictions by including low-cost stage measure-
ments in NWM’s DA routine. We tested our hypothesis
(“incorporation of local stage measurements into the NWM
modeling procedure will expand and improve the current pre-
diction capability”) for a study domain, part of the Upper
Mississippi River and the Missouri River basins centered on
Iowa. For streamflow DA and its performance assessment, we
used data from 140 USGS gauging stations, 280 IFC stream
stage sensors (Kruger et al. 2016), and 30 USGS stage-only
stations in Iowa for the period from 2016 to 2021. To derive
streamflow discharge from the stage measurements collected

from 310 stage-only sensors, SRC were developed based on
hydraulic modeling using channel geometry information re-
trieved from lidar-based elevation data (see Quintero et al.
2021).

The simulations using NWM’s current DA configuration
(“USGS-only”) clearly showed that DA improves streamflow
prediction skills at the 72 evaluation points. DA led to
improved runoff volume and peak discharge with smaller
bias and variability, compared to the open-loop simulation
(No DA). The overall performance measure, KGE, shown
in Fig. 5 confirmed the superiority of DA to open-loop; the

FIG. 9. Observed and simulated hydrographs at the two locations marked by the solid red circles in Fig. 8. The
two locations are indicated in Fig. 2a.

FIG. 10. Performance comparison for NC1 between the DA (Combined) and open-loop (No DA) simulations with respect to drainage
scale.
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superior performance tends to increase as drainage scale
becomes larger.

We combined all available streamflow data including the
ones derived from stage measurements and fed them into the
DA stream within the NWM channel routing process. To as-
sess the actual benefit of stage sensors in streamflow predic-
tion, we defined three types of gauge network configuration
(NC) that may affect DA performance. These NC types illus-
trated in Fig. 7 distinguish the DA effects of the new configu-
ration (Combined) from those of NWM’s current one. The
assessment results at 100 evaluation points revealed that the
stage sensors deployed at the upstream reaches of uppermost
USGS stations (NC1) improve streamflow prediction. We
also observed that the stage sensors located in between USGS
stations (NC3) tend to degrade prediction performance due
to the inherent limitation of lidar-based SRC over relatively
large drainage area. These findings confirm that our hypothe-
sis is valid, and low-cost stage sensors are particularly useful
for streamflow prediction at smaller-scale basins.

The quality of SRC is a key element to determine the per-
formance of streamflow prediction generated by DA using
the stage sensor data, as presented in Fig. 9. The estimation of
SRC is affected by a variety of uncertainty factors, and we
demonstrated the effect from one of the most significant fac-
tors (i.e., bottom of channel geometry) on the quality of rating
curves. In the future, we hope to extend the comparison
shown in Fig. 3 to many more USGS gauging stations where
quality-assured rating curves are maintained. Perhaps, one way
that may mitigate the uncertainty effect of SRC on the DA
predictions (e.g., for NC3) is to apply a weighing scheme to
combine the measurements from stage sensors and propaga-
tion from USGS assimilation points upstream. The weights
might be determined through a consistency check by compar-
ing streamflow time series at previous times and fractional
coverage between an evaluation point and the two assimila-
tion points upstream.

While we developed SRC for the USGS stage-only stations,
the DA effect from these sensors was quite limited because of
their small coverage areas (see Fig. 2) and short data period
(i.e., one year). The results from stage sensors presented in
this study were mostly contributed by the ones operated by
IFC. IFC has made a consistent effort to develop (for new
sites) and improve the SRC (Krajewski et al. 2017; Quintero
et al. 2021). To more effectively utilize the data from the
USGS stage-only stations, we think that a similar degree of
effort and investment (e.g., data quality control and mainte-
nance) is required by the USGS. The framework demon-
strated in this study will increase the utility of stage-only
sensors, which have had limited potential for hydrologic appli-
cations, by developing SRC. Hopefully, this framework would
be readily applied to include thousands of stage-only stream
gauges nationwide (e.g., CRS 2019) operated by the USGS
or local agencies in the NWM modeling and forecasting
procedures.

In this study, we were able to evaluate the benefit of stage-
only sensors for streamflow prediction at the limited number
of USGS stations. However, we think that the effect and
actual benefit of these sensors are much broader and more

significant than what we presented in this study. For example,
Fig. 11 illustrates the Iowa communities and river reaches
monitored by the current USGS stations and IFC sensors.
The extended coverage offered by IFC sensors will comple-
ment NWS’s present forecasting domain and provide useful
hydrologic guidance for local communities that are not cur-
rently benefitted from NWS’s streamflow forecasts with the
current DA method.
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